通常用來做Enrichment analysis的方法不外乎是
(1) Binomial distribution probability
(1) Binomial distribution probability
(2) Hypergeometric probability P[X ≥ x] 的機率
ex. We have total 38574 probes,
significance have 14558, then we take 53 probes and get 33 probes significance
[R code ]:
P[X ≥ 33] = P[X
= 33]+P[X > 33] = 1-P[X ≤ 32]
dhyper(33, 14558, (38574-14558), 53 ) +
phyper(33, 14558, (38574-14558), 53, lower.tail = FALSE)
= 1 - phyper(32, 14558, (38574-14558), 53)
P[X ≥ 33] =
dhyper(33, 14558, (38574-14558), 53 ) +
phyper(33, 14558, (38574-14558), 53, lower.tail = FALSE)
= 1 - phyper(32, 14558, (38574-14558), 53)
而此Hypergeometric 機率又與Fisher's Exact Test 單尾檢定相同:
x <- matrix( c(33,20,14525,23996), ncol=2)
out <- fisher.test(x, alternative = "greater")
out$p.val = P[X ≥ 33]
out <- fisher.test(x, alternative = "greater")
out$p.val = P[X ≥ 33]
+
|
-
|
||
+
|
33
|
14558-33
|
14558
|
-
|
20
|
24016-56
|
24016
|
53
|
38574-53
|
38574
|
沒有留言:
張貼留言